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National Energy Policy

National
Energy
Policy

Report of the
National Energy Policy Development Group

May 2001

"The NEPD Group
recommends that the President
direct the Secretary of Energy
to develop next-generation
technology--including

hydrogen and fusion."



Why Develop Fusion Energy

Fusion 1s a unique energy option with:

o0 Secure inexhaustible fuel reserves

— Fuel obtained from seawater
— One pound of fusion fuel = 25,000 barrels of oil

o Multiple end uses
— Electricity
— Fissile fuel
— Hydrogen production
o Attractive environmental and safety features
— No long-lived reaction products
— Radioactive structure is relatively easy to manage

— No combustion pollutants are produced
— No possibility of runaway reaction

o Ancillary Benefits, such as, advanced science and
technology/spinoffs/education



Fusion in a Hydrogen Economy
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Comparison of Fission and Fusion
Radioactivity After Shutdown
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Fusion Can Contribute to
Carbon Management on a Timely Basis
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Progress in Fusion Energy has been Dramatic
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U.S. Fusion Program Participants
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The Tokamak -- The Workhorse of Fusion Science

Poloidal
Magnetic

Plasma
Toroidal
Magnetic
Science Issues
Configuration Stability Heating, Fueling, Current Drive
Confinement and Transport Boundary Physics

Integration

Burning Plasma Physics



Major U.S. Magnetic Fusion Facilities
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Fusion Energy Sciences Budget

FY 2003 Congressional
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Major International Facilities

European Torus (JET)



Burning Plasma Physics
The Next Frontier

Three Options

(Different Scales) B " /i 741
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Upcoming ITER Decision is
Crucial for Fusion World-wide

Merging of Fusion Science and Fusion Energy
Burning Plasma Physics & Power Plant Relevant Technologies

o ITER Parties (EU, JA and RF) have

completed design for reduced cost
(~$5B) and technical objectives
(same mission)

— ITER would be first burning
plasma physics device

o ITER Parties (now EU, JA, RF and
Canada) want the U.S. to join
ongoing negotiations

Fusion Power: S00MW
Burn Pulse: 400-3600 sec



Why the U.S. Left ITER

o “ITER won’t work” --“Science” article, 12/96

— Physics of Plasmas paper, 3/00 -- extensive analysis showed
critical 12/96 article was wrong

o “ITER costs too much” -- $10B

— Now $5B after revision to reduce costs through reduction in
detailed technical objectives, thereby--reduced size, mass,
power and cost.

o ‘“Partners will never agree to move forward” -- EDA extension
— Negotiations underway

— Multiple sites offered



Four Thrust Areas are Required for
Practical Magnetic Fusion Energy

Burning Plasmas

Fundamental Understanding Cost-Effective

Fusion

Energy

Configuration Optimization

IANA

Materials and Technology

Areas defined by the
Fusion Energy Sciences Advisory Committee.



Scientific Understanding of Fusion
Plasmas has Increased Dramatically

Advanced Computing Plasma Measurements

Simulation of turbulence in Fast imaging of plasma
magnetic fusion plasma. turbulence.

Goal: Practical fusion energy through high-quality science.



A NEW ERA IN PLASMA CONTROL:
KEY TO THE DIll-D AT PROGRAM
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Variations of the Toroidal Plasma
Configuration Address Key Fusion Issues

Z(m)

Compact Stellarator design
optimizes plasma stability and
steady-state properties.

Spherical Torus offers high fusion
power density at low magnetic field.

Goal: Combine with ITER results for better fusion energy.



The U.S. is Planning Two Compact Stellarators

Different configuration and design approaches are used




Nanoscience and New Designs are Advancing
Fusion Materials and Technologies

Molecular Dynamics calculation of atomic Simplified blanket designs allow high
displacements due to neutron impact. electrical efficiency and low radioactivity.

Goal: Convert fusion power to electricity with high
efficiency and minimum radioactivity.



U.S. MFE Program Leaders have Developed an

Optimized Plan to Put Fusion on the Grid
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Burning Plasma Consensus Building

September 2001

July 2002

September 2002

December 2002

December 2002

FESAC Report on Burning Plasma Physics

Fusion Community Workshop to assess
options for a Burning Plasma Experiment

FESAC Recommendations for a Burning
Plasma Program Strategy

NRC Letter Report on Strategy

FESAC Preliminary Report on Development Path



Fusion Energy Sciences Budget

FY 2003
Congressional

$257.3 M
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*Housekeeping includes SBIR/STTR, GPE/GPP, TSTA cleanup, D-Site caretaking at PPPL, HBCU, Education, Outreach, ORNL Move, and Reserves



